A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS

نویسندگان

چکیده

Let $R$ be a commutative ring with nonzero identity and let $M$ unitary $R$-module. The essential graph of $M$, denoted by $EG(M)$ is simple undirected whose vertex set $Z(M)\setminus {\rm Ann}_R(M)$ two distinct vertices $x$ $y$ are adjacent if only ${\rm Ann}_{M}(xy)$ an submodule $M$. $r({\rm Ann}_R(M))\not={\rm Ann}_R(M)$. It shown that connected diam}(EG(M))\leq 2$. Whenever Noetherian, it complete either $Z(M)=r({\rm Ann}_R(M))$ or $EG(M)=K_{2}$ diam}(EG(M))= 2$ there $x, y\in Z(M)\setminus $\frak p\in{\rm Ass}_R(M)$ such $xy\not \in \frak p$. Moreover, proved gr}(EG(M))\in \{3, \infty\}$. Furthermore, for Noetherian module Ann}_R(M))={\rm $|{\rm Ass}_R(M)|=2$ bipartite not star.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Associated Graphs of Modules Over Commutative Rings

Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...

متن کامل

The generalized total graph of modules respect to proper submodules over commutative rings.

Let $M$ be a module over a commutative ring $R$ and let $N$ be a proper submodule of $M$. The total graph of $M$ over $R$ with respect to $N$, denoted by $T(Gamma_{N}(M))$, have been introduced and studied in [2]. In this paper, A generalization of the total graph $T(Gamma_{N}(M))$, denoted by $T(Gamma_{N,I}(M))$ is presented, where $I$ is an ideal of $R$. It is the graph with all elements of $...

متن کامل

NONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS

In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...

متن کامل

ANNIHILATING SUBMODULE GRAPHS FOR MODULES OVER COMMUTATIVE RINGS

In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $...

متن کامل

Jónsson Modules over Commutative Rings

Let M be an infinite unitary module over a commutative ring R with identity. Then M is called a Jónsson module provided every proper submodule of M has smaller cardinality than M. These modules have been studied by several algebraists, including Robert Gilmer, Bill Heinzer, and the author. In this note, we recall the major results on Jónsson modules to bring the reader up to speed on current re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Electronic Journal of Algebra

سال: 2021

ISSN: ['1306-6048']

DOI: https://doi.org/10.24330/ieja.852234